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SUMMARY 

A second-order radiation boundary condition (RBC) is derived for 2D shallow water problems posed in 
‘wave equation’ form and is implemented within the Galerkin finite element framework. The RBC is derived 
by matching the dispersion relation for the interior wave equation with an approximate solution to the 
exterior problem for outgoing waves. The matching is correct to second order, accounting for curvature 
of the wave front and the geometry. Implementation is achieved by using the RBC as an evolution equation 
for the normal gradient on the boundary, coupled through the natural boundary integral of the Galerkin 
interior problem. The formulation is easily implemented on non-straight, unstructured meshes of simple 
elements. Test cases show fidelity to solutions obtained on extended meshes and improvement relative to 
simpler first-order RBCs. 
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1. INTRODUCTION 

In a number of computational solutions of wave propagation problems the domain of interest 
has to be terminated artificially in order to limit the computational expenses. On such open 
boundaries there is a need for the specification of some sort of boundary condition that allows 
signals (waves) emanating within the domain to exit through the boundary as if it were not 
present. Several approaches have been devised for the treatment of open boundaries. Review 
papers were compiled e.g. by Chapman,‘ Moore et ~ 1 . ~  and most recently by G i ~ o l i . ~  Early 
approaches include the use of sponge zones’ and so-called infinite  element^.^ Exact methods for 
the treatment of the open boundary include the hybrid method developed by Lynch et u I . , ~  
coupling an interior finite element formulation with a boundary element formulation for 
the exterior, and the global look-back truncation scheme of Ziolkowski rt al. These formulations 
are non-local in space and/or time and hence computationally expensive, but they are feasible 
for some problems. 

As a formulation that is local in both space and time, the use of radiation boundary conditions 
(RBCs) has found widespread acceptance. The approach is based on an approximate form of 
the governing partial differential equation (PDE) which is applied at the open boundary. The 
simplest form is the Sommerfeld ~ o n d i t i o n , ~  which is exact for the one-dimensional, pure wave 
equation. Several methods have been devised to implement this condition in finite difference 
codes (see e.g. References 1 and 8). Boundary conditions for multidimensional problems have 
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been derived e.g. by Engquist and Majda,’ Bayliss and Turkell,” Feng” and Higdon.” It has 
been common to distinguish approximations of various orders, with the Sommerfeld condition 
being a first-order condition. 

Most studies deal with the ‘pure’ wave equation, but several authors have studied open 
boundary conditions for more generalized PDEs. For example, Engquist and Majda’ and 
Verboom and Slob13 have considered the shallow water equations and Johnsen er a1.14 have 
studied RBCs for the one-dimensional telegraph and Klein-Gordon equations. Other examples 
are given in Reference 3. 

The present study provides a derivation of a new second-order RBC for shallow water 
problems with rotation. Its implementation in two-dimensional finite element codes is shown, 
including the treatment of curved boundaries and irregular meshes. The study shows the quality 
of the RBC for the pure wave equation, the shallow water wave equation as formulated by 
Lynch and GraylS and the Klein-Gordon equation. 

GOVERNING EQUATIONS 

The shallow water equations in their simplest form are 

d U  a i  
2t ax - f u  + g ~ = 0, 

where i is the free surface elevation, h is the water depth, u and u are the velocities in the x- and 
y-direction respectively, f is the Coriolis parameter and y is the gravitational acceleration. The 
effects of friction, wind forcing, baroclinicity and advection are neglected. This system of 
equations can be reformulated to yield the elevation equation in two different wave equation 
forms. Following Lynch and Gray,I5 we obtain the shallow water wave equation (SWWE) 

a y  
L:t2 

- V - c2Vt - V - (f x kv) = 0, (4) 

where c = J ( g h )  is the wave speed. In the following we assume the water depth k to be constant, 
in which case it is convenient to restate the SWWE as 

a21 
dt2 

- V * c 2 V [ + f h < = 0 ,  

where the vorticity is introduced as 

It is easy to show from ( l t ( 3 )  that 
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which can be stated as 

where Q’(x,  y )  is the perturbation potential vorticity. This leads to the Klein-Gordon equation 
(KGE) (see e.g. Reference 16) 

“ 4  V . c2V[ + f2[ = -fh’Q’(x,  y).  -- 
at2 (9) 

Both of these wave equations (4) and (9) will be used herein. The SWWE requires simultaneous 
solution of (2) and (3) for the velocities in the rotational term; the KGE is uncoupled from the 
velocities. In the absence of rotation they are of course identical and reduce to the ‘pure’ wave 
equation. 

DERIVATION OF THE RADIATION BOUNDARY CONDITION 

Several methods have been used for the derivation of RBCs. Our derivation is based on the 
dispersion relation of the Klein-Gordon equation. 

We assume for simplicity that the initial conditions are such that the potential vorticity Q’ is 
zero on the boundary. In this case the KGE can be rewritten in (approximate) cylindrical 
co-ordinates as 

Following Johnsen et a1.,14 we consider the solution of the form 

where lo is a constant, Hb’) is the Hankel function of zeroth order, o is a frequency and K ,  and 
K ,  are the wave numbers in the normal and tangential direction respectively. This solution yields 
the dispersion relation 

This dispersion relation is now solved for K,,  where we consider two limiting cases. In the first 
case we assume that o B f ;  so that 

CZ 
K, = f !! J( 1 - .:). 

c 

The square-root term is now linearized, where linearizations of different order can be used. We 
employ a second-order linearization of the square-root term which consists of the approximation 



578 M .  JOHNSEN AND D. R .  LYNCH 

The coefficients p0 and p 2  depend on the type of linearization. For example, a Pade approxima- 
tion (used herein) gives p0 = 1 and p z  = 0.5 (see e.g. Reference 2). This yields the approximate 
dispersion relation 

(where we consider only outgoing waves). 
In the other limit we assume ,f 9 (0, so that 

Using the same linearization as above, this limit is approximated as 

zck',. j / K  = - p  ~~ - p  f' 
0 

C 

A composite of (15) and (17) which satisfies both asymptotic limits is 

Figures 1 and 2 show the dimensionless normal wave number CK,,/(O as a function of f / w  in 
comparison with the exact normal wave number (equation (12)). An additional parameter is the 
tangential wave number, given in dimensionless form as ch-Jw. This wave number is directly 
related to the angle of incidence at which a wave hits a boundary (for the pure wave equation 
CKJW = 0 corresponds to normal and CKJW = 1 to tangential incidence). Plotted are the 
amplitude and phase of CK,/W versus f / w  for both dispersion relationships (12) and (18) using 
C K J O I  = 0 (Figures l(a) and l(b)) and CKJW = 0.75 (Figures 2(a) and 2(b)). The plots clearly 
indicate the validity of the approximation ( 1  8), which is asymptotically correct for f / w  -+ 0 and 

We now employ the far-field approximation to the exact solution of the wave equation, which 
f l o  + %. 

fulfils the Sommerfeld condition of radiation (Reference 7, p. 230ff): 

(19) 

Using this solution, we can identify the approximate dispersion relation as being appropriate 
for the PDE 

i = ( ~ - l / z ~ j ~ ~ l u r + ~ , , r + ~ , s )  
0 

This is the desired RBC, expressed as an evolution equation for d[/dn. We will test this in 
comparison with the Sommerfeld RBC 

which has been widely studied. 
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FINITE ELEMENT FORMULATION 

KGE formulation 

equation (9): 
The finite element formulation for the KGE is based on the weighted residual statement of 

(2 3 4i) - <V * c’V5, 4i) + ( f  ’1, 4i) = C f H ’ Q ’ ,  4i), (22) 

where 4i  is a scalar weighting function. The notation (a,  b )  refers to the inner product operator 
(the integral over the domain of interest of the product of a and b). Integration of the second 
term by parts results in the weak form 

where the surface integral is evaluated on the boundary of the domain and q = d[/dn is the 
normal gradient on the boundary, directed outwards. 

Equation (23) is the standard evolution equation for i, which is well posed when q is known 
in the boundary integral (or, alternatively, if i is known). For an open boundary neither ( nor 
q will be known a priori. Instead, we invoke an evolution equation for the normal gradient in 
the form of the RBC (20). In weak (i.e. boundary integral) form we have 

wherein the d2[/as2 term has been integrated by parts.* Equations (23) and (24) define a closed 
system of two unknown functions: [(x, y, t )  on the domain and q(s, t )  on the boundary. We 
expand both functions in the finite element basis $i: 

The isolated role of q in both equations (23) and (24) instantly suggests a semi-implicit 
time-stepping strategy, which is explored below. 

S W WE formulation 

The weighted residual statement of the SWWE (4) is given by 

(2, 4i) - (V - c’V5, 4 i )  - (V * (f x hv), 4i) = 0. 

* A simply closed radiating boundary is assumed. For mixed boundary conditions, endpoint contributions would appear 
from the integration by parts along a radiating boundary segment (see Appendix). 



582 M. JOHNSEN AND D. R. LYNCH 

Integration by parts results in the weak form 

in which the additional circulation integral appears on the right-hand side. Here we also 
introduce the arbitrary factor T~ as suggested by Kinnmark and Gray.I7 This factor, which is 
set to T~ = s - '  stabilizes long-time drifts that otherwise may develop in the solution. The 
weak form of the RBC (20) is the same as for the KGE formulation (equation (24)). While the 
KGE formulation is uncoupled from the velocity solution v, the SWWE is not. Hence we need 
to specify the basis for v, i.e. 

in addition to that for ( and q (equations (25)  and (26)). This basis is used in (24) and (28) and 
in addition in a Galerkin form of ( 2 )  and (3) which is used for the evolution of v (see below). 

IMPLEMENTATION OF THE RBC 

KGE jbmiulution 

Equation (23) may be discretized in time in a standard manner (see e.g. Reference 15), leading 
to the form 

[ A ] ( [ } ~ + *  = { h } k  + { I  cz(; ( q k t '  + q k - ' )  + (1 - O)qk 4i ds 1 1  
where superscripts indicate the time level, A is a blend of conventional Laplacian and mass 
matrices, { b }  is the vector of known quantities and the boundary integral is centred and implicit. 
0 is a time-weighting factor, normally set between 0 and 1. We insert the evolution equation 
of the normal gradient q into the boundary integral as follows. Centred (leapfrog) differencing 
of (24) leads to 
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where E is another time-weighting factor, again usually set between 0 and 1. Rearrangement yields 

qk+' ( l  + f&At)+i  ds 

Insertion of the expanded RBC (32) into the FE boundary integral (30) then yields 

where the term in the boundary integral involving lk" is implicit and is moved into the 
left-hand-side matrix. In the solution procedure the first step is the determination of the 
boundary integrals (see Appendix). Equation (33) is then assembled and the solution for ik+' is 
determined. From this the normal gradient qk+ '  is determined using equation (32). This 
completes a time step and the procedure is reiterated. 

S W WE formulation 

(28) is discretized as in (30): 
The SWWE formulation follows quite closely the KGE formulation. The interior problem 

[ ~ l ] { [ } ~ + ~  = { b } k  + {$ c2(; (qk+'  + q k - l )  + ( 1  - O)qk 4i ds 1 )  
- { to(Hv) * ih$i ds - fhvk * .G+i ds. I (34) 

(The last two boundary integral terms have been pulled out of { b } k  for clarity). The discretization 
of the RBC is as above, leading to 
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As in the KGE formulation, the first step in the solution procedure is the determination of j k + l  

from (35). Following this, we determine q k + '  using equation (32). Then we compute v k t '  
following the procedure outlined in the next subsection, which completes the time step. 

Velocities 

For the determination of the velocities we follow e.g. Werner and Lynch.18 The X- and 
y-momentum equations (2) and (3) are approximated as 

(y)+ f(+)= U k + l  + U k  +,( j k + '  + ik ). (37) 

Rearrangement yields the system of equations 

(38) 
(2/At)uk + . fvk - gV,(jk+' + j k )  
-,fuk + (2/At)vk - gV,([k+' + lk) 

which is easily solved using a Galerkin procedure. Hence the velocities at each node depend 
only on the elevation gradients at the respective node and can be recovered after the elevation 
has been computed via a relatively simple process. For the SWWE this must be done 
at the end of each time step. It should be noted that in this formulation no additional RBC is 
necessary for the velocities. 

TEST CASES 

The test cases are similar to the case from Reference 13 and consist of an initially Gaussian- 
shaped free surface centred about the position (xo, y o )  on a two-dimensional mesh. The initial 
conditions are given by 

[(t  = 0, X, y) = lo exp - ~ , ( 2) (39) 

(t = 0, x, y )  = - 
a i  
dr 
-~ 
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where lo = 1 m is an amplitude, r$ = (x - x0)’ + (y - yo)2  and L = 25 km is a length scale. Two 
time levels of [ are initialized as above and the initial conditions for the velocities are vk = 0. 
For the Klein-Gordon equation cases the potential vorticity Q’ is obtained from the initial 
conditions on [ and v via equation (8). The gravitational acceleration is g = 9.81 m s - ~  and the 
wave speed is c = 22.1 5 m s-  (corresponding to a water depth h = 50 m). The mesh size in all 
cases was set to A s  = 3.75 km and the Courant number is set to Co = cAt/As = 0.25, leading to 
a time step of Ar = 42.3 s, since preliminary testing showed that for such a small Courant number 
the results are independent of the time step chosen. 

In the first test case we use a circular mesh (Figure 3) consisting of 2521 nodes and 4800 
triangular finite elements, which has a diameter of 300 km. The radial spacing is Ar = 3.75 km 
and the circumferential spacing is A@ = 27rAr/l2r. The location of the reference nodes is given 
in Table I. In the first set of runs the initial distribution is centred about the origin (xo = yo  = 0). 

node A 

/ 

node 
\ 

node D 

node C 

Figure 3. Circular two-dimensional finite element mesh used for the study of radiation boundary conditions, indicating 
also the location of the reference nodes 
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Table I. Location of reference nodes 
A-D in the circular mesh 

Node x (km) Y (km) 

A 0 150 
B - 150 0 
C 0 - 150 
D 150 0 

This is a somewhat idealized case, since the curvatures of the wave front and of the boundary 
are the same, leading effectively to one-dimensional wave propagation at the boundary. Hence 
in a second set of runs the initial distribution is uncentred, where the results are shown for the 
parameters xo = 60 km and y o  = 30 km. 

The second test case consists of a rectangular mesh (Figure 4) with 14,661 nodes and 28,800 
triangular finite elements. The mesh has the dimensions 675 x 300 km’, centred about the origin. 
The location of the reference nodes is given in Table 11. In this test case we can investigate the 

Figure 4. Rectangular two-dimensional finite element mesh used for the study of radiation boundary conditions, 
indicating also the location of the reference nodes 

Table 11. Location of the reference 
nodes A-F in the rectangular mesh 

Node x (km) Y (km) 

A 0 - 150 
B 75 - 150 
C 150 - 150 
D 225 - 150 
E 300 - 150 
F 337.5 - 150 
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influence of a relative curvature between a wave front and the boundary and a varying angle 
of incidence of the wave front. The corner nodes are particularly interesting, since the relative 
curvature is poorly resolved. 

In all cases the results for these meshes are shown in comparison with extended, otherwise 
identical meshes (with a second-order RBC imposed on the boundary of the extended mesh). 
This allows for the testing of the effect of the boundary condition alone, since it is the only 
difference between the two runs. The results are shown for the above-derived second-order RBC 
with Pade coefficients ( p o  = 1.0, p 2  = 0.5) as well as for the first-order RBC with a Pade coefficient 
( p o  = 1.0) and for the Sommerfeld RBC. The time-weighting factors 0 and t: in the boundary 
integral are chosen to be 8 = E = 0.5. Preliminary testing showed that the results are independent 
of 0 for 8 2 0.5 and the solutions became unstable for W < 0.5. In all cases the interior problem 
is solved with an explicit approach to the wave equation operator as in Reference 15. All domain 
and boundary integrals are evaluated by nodal quadrature; as a consequence, all mass matrices 
are diagonalized. 

As an approximate measure for the quality of the boundary condition we determine a 
maximum relative error after 

where A( is he discrepancy induced by the boundary condition compared with an extended 
mesh solution. 

RESULTS 

We examine first the pure wave equation results, i.e. .f‘ = 0, in order to focus on the curvature 
effects. We then introduce rotation and examine the KGE and SWWE cases. 

Wuve equation 

Figures 5(a) and 5(b) show the time history of the elevation at node A in the circular 
mesh for the Sommerfeld RBC and the second-order RBC for the centred initial condition 
(x0 = yo = 0). Figures 6(a) and 6(b) show the wave equation solution at nodes A-D for the two 
boundary conditions for the uncentred initial distribution (xo = 60 km, yo = 30 km). The 
solution subject to the second-order RBC shows a clear improvement over the Sommerfeld RBC. 
Figure 7 shows a perspective plot of the 2D wave equation solution for the uncentred case using 
the second-order RBC. Shown are the elevations for the first 350At in 25At increments (upper 
left to lower right). 

Figures 8(a) and 8(b) show the time history of the elevation at nodes A-F along the boundary 
of the rectangular mesh as compared with the extended mesh for the two boundary conditions 
applied for the ‘pure’ wave equation. The maximum relative error compared with the extended 
mesh solution following equation (42) is shown in Figure 9. The plots show the superior 
performance of the second-order RBC as compared with the Sommerfeld RBC. For both RBCs 
the results are best at normal incidence. Along the straight boundary the Sommerfeld RBC is 
lacking a term that accounts for a relative curvature between wave front and boundary (the 
i3’[5/ds2 term in the second-order RBC). The plots clearly indicate that the inclusion of this term 
significantly improves the results for even small amounts of relative curvature (near node A). 
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Figure 6(a). Elevations at nodes A-D for the wave equation on the circular mesh; comparison between Sommerleld 
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Figure 6(b). Elevations at nodes A-D for the wave equation on the circular mesh; comparison between second-order 
RBC and extended mesh results (x, = 60 km, yo = 30 km) 
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Figure 7. Perspective plot of the elevation field for the 2D wave equation using the second-order RBC for increasing 
time (upper left to lower right). Shown are the elevations for the first 350At in 25Ar increments 
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Figure 9. Maximum relative error along the boundary of the rectangular mesh for various boundary conditions in 

comparison with an extended mesh solution for the wave equation 

KGE formulation 

Figures 10(a) and 10(b) show the time history of the elevation at nodes A-F along the boundary 
of the rectangular mesh as compared with the extended mesh for the two boundary conditions 
applied for the shallow water wave equations in the KGE formulation. Figure 11 shows the 
maximum relative error following equation (42) along the boundary. As can be seen in these 
plots, the second-order RBC again shows a superior performance as compared with the 
Sommerfeld RBC. The plots also reveal that the extended mesh results show reflections from 
the boundary which travel through the system. These reflections are mainly responsible for the 
relatively poor performance of the second-order RBC near normal incidence and they also show 
that extending the mesh alone does not necessarily improve the results. 

For the case of the KGE formulation using the second-order RBC we also present velocity 
solutions. Figure 12 shows the complete velocity field at t = 60,000 s. At this time the initial 
disturbance has almost completely left the computational domain and we can see the set-up of 
a clockwise gyre. Figure 13 shows the velocities at (a) node A and (b) node F versus time in 
comparison with an extended mesh solution. The comparison of the velocities with the extended 
mesh is excellent for the passing of the initial disturbance (which is wave-equation-dominated) 
and still quite good for the later period (which is dominated by the rotational term in the 
momentum equations) at node A. At the corner node F the comparisons are still quite reasonable. 
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Figure 13(a). Velocities at node A Tor the KGE formulation on the rectangular mesh using the second-order RBC in 
comparison with an extended mesh solution 
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S WWE formulation 

In Figures 14-17 we show the same plots for the SWWE formulation that were presented in 
Figures 10-13 for the KGE formulation. The figures show that the time history of the elevations 
and velocities and the quality of the boundary conditions in terms of agreement with the extended 
mesh results are virtually identical with the results obtained for the KGE formulation. This 
demonstrates the validity of the RBC approach for the SWWE formulation. 
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Figure 14(a). Elevations at nodes A-F for the SWWE formulation on the rectangular mesh; comparison between 
Sommerfeld RBC and extended mesh results 
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In order to demonstrate the long-term stability of the code using this approach, Figure 17(c) 
shows the velocities at node F for an extended run. Here the simulation was run for 7.5 x lo6 s, 
which is roughly equivalent to 3 months. We can see that the velocities reach a stable steady 
state solution. Similar runs for the smaller circular mesh also showed no sign of distress for runs 
of more than a year of simulation time. 
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Figure 14(b). Elevations at nodes A-F for the SWWE formulation on the rectangular mesh; comparison between 
second-order RBC and extended mesh results 
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Figure 15. Maximum relative error along the boundary of the rectangular mesh for various boundary conditions in 

comparison with an extended mesh solution for the SWWE formulation 
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Figure 16. Velocity field for the SWWE formulation using the second-order RBC on the rectangular mesh at t = 60,000 s 
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Figure 17(c). Velocities at node F for the SWWE formulation on the rectangular mesh using the second-order 
RBC-xtended run (3  months) 

CONCLUSIONS 

The test cases show the validity of the second-order RBC for various meshes, in particular 
its superiority over the Sommerfeld RBC. The approach is valid for arbitrary, unstructured 
meshes and not restricted to certain geometries. The results also indicate certain guidelines 
for good results: in general it is advantageous to chose a boundary shape that avoids sharp 
kinks or corners and enables the waves to impinge on the boundary close to normal 
incidence. 

The results for both the SWWE and KGE formulations in their simplest form are very 
encouraging and in good agreement with those for simpler 1D cases as studied in Reference 14. 
Further studies should concentrate on the effect of varying water depth and the inclusion 
of friction and wind forcing. A further challenge is the superposition of an RBC solution 
upon a motion with stronger boundary conditions, e.g. Dirichlet conditions on tidally induced 
elevation. 
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Figure 18. Notation of the normal and tangential unit vectors at an arbitrary boundary node 

APPENDIX: EVALUATION O F  BOUNDARY INTEGRALS 

For the evaluation of the boundary integral of the second tangential derivative we apply a partial 
integration 

The second term on the right-hand side is zero, whereas the first term for linear basis and 
weighting functions is evaluated as 

(see Figure 18). The boundary integral of the curvature term may be evaluated as19 

where 

sin(Acc) = 4, x S,,. 

Hence we can deduce that in effect 

1 Am 
r As 
- 

(45) 

(46) 
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